Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Search Suggestions

      Royal Mail  express delivery to UK destinations

      Regular sales and promotions

      Stock updates every 20 minutes!

      Physically-Based Models for the Analysis of Raman Spectra

      1 in stock

      Firm sale: non returnable item
      SKU 9783958863194 Categories ,
      Select Guide Rating
      In recent years, spectroscopy has developed into an increasingly valuable tool to determine the composition of mixtures; for scientific questions as well as for the industry. The increasing use of spectroscopy raises the question how to best use the obtained data. For the anal...

      £43.99

      Buy new:

      Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

      Shipping costs: All shipping costs calculated in the cart or during the checkout process.

      Standard service (normally 2-3 working days): 48hr Tracked service.

      Premium service (next working day): 24hr Tracked service – signature service included.

      Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

      Signature Service: This service is only available for tracked items.

      Leave in Safe Place: This option is available at no additional charge for tracked services.

      Description

      Product ID:9783958863194
      Product Form:Paperback / softback
      Country of Manufacture:GB
      Series:Aachener Beitrage zur Technischen Thermodynamik
      Title:Physically-Based Models for the Analysis of Raman Spectra
      Authors:Author: Dr Peter, Ph.D. Beumers
      Page Count:136
      Subjects:Mechanical engineering, Mechanical engineering
      Description:Select Guide Rating
      In recent years, spectroscopy has developed into an increasingly valuable tool to determine the composition of mixtures; for scientific questions as well as for the industry. The increasing use of spectroscopy raises the question how to best use the obtained data. For the analysis of spectral data, the method of Indirect Hard Modeling (IHM) has been established besides statistical methods like PLS. IHM is a nonlinear method that can therefore efficiently treat nonlinear effects such as peak-shifts. In the present work, the IHM method is expanded to increase its applicability. IHM treats nonlinear effects in the spectral evaluation. Therefore, the direct proportionality between the concentration and the Raman signal of a component can be used for calibration. The resulting linear calibration model allows for reliable extrapolation. Thus, IHM can be used to study reactive systems, even if only binary subsystems can be used for calibration. However, thermodynamic systems with intermediates can so far only be calibrated by using thermodynamic models. In this work, a method is established that calibrates a reactive system with intermediates only based on the reaction mechanism as well as stoichiometry and electroneutrality. Spectral backgrounds, e.g., fluorescence, can be treated by a spectral pretreatment or via background models. However, spectral backgrounds are still a common source of error in IHM. Derivatives have long been used very effectively in statistical methods. Therefore, IHM is adapted so that it becomes possible to evaluate the first derivative of spectra. The calibration of IHM is mostly limited to the relative spectral intensities of the involved components. In the present work, a method is presented that uses the information in the calibration spectra more thoroughly. For this purpose, nonlinear effects are parametrized as a function of concentration. The commonly used peak profiles do not reflect the physical reality at a detector very well. As a result, narrow modelled peaks may change their apparent intensity if they are shifted. To correct these shortcomings, a new peak model is proposed in this work that is more closely aligned to the physical reality of a detector.

      In recent years, spectroscopy has developed into an increasingly valuable tool to determine the composition of mixtures; for scientific questions as well as for the industry. The increasing use of spectroscopy raises the question how to best use the obtained data. For the analysis of spectral data, the method of Indirect Hard Modeling (IHM) has been established besides statistical methods like PLS. IHM is a nonlinear method that can therefore efficiently treat nonlinear effects such as peak-shifts. In the present work, the IHM method is expanded to increase its applicability.

      IHM treats nonlinear effects in the spectral evaluation. Therefore, the direct proportionality between the concentration and the Raman signal of a component can be used for calibration. The resulting linear calibration model allows for reliable extrapolation. Thus, IHM can be used to study reactive systems, even if only binary subsystems can be used for calibration. However, thermodynamic systems with intermediates can so far only be calibrated by using thermodynamic models. In this work, a method is established that calibrates a reactive system with intermediates only based on the reaction mechanism as well as stoichiometry and electroneutrality.

      Spectral backgrounds, e.g., fluorescence, can be treated by a spectral pretreatment or via background models. However, spectral backgrounds are still a common source of error in IHM. Derivatives have long been used very effectively in statistical methods. Therefore, IHM is adapted so that it becomes possible to evaluate the first derivative of spectra.

      The calibration of IHM is mostly limited to the relative spectral intensities of the involved components. In the present work, a method is presented that uses the information in the calibration spectra more thoroughly. For this purpose, nonlinear effects are parametrized as a function of concentration.

      The commonly used peak profiles do not reflect the physical reality at a detector very well. As a result, narrow modelled peaks may change their apparent intensity if they are shifted. To correct these shortcomings, a new peak model is proposed in this work that is more closely aligned to the physical reality of a detector.


      Imprint Name:Verlag G. Mainz
      Publisher Name:Verlag G. Mainz
      Country of Publication:GB
      Publishing Date:2020-01-20

      Additional information

      Weight186 g
      Dimensions210 × 149 × 9 mm