Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Search Suggestions

      Royal Mail  express delivery to UK destinations

      Regular sales and promotions

      Stock updates every 20 minutes!

      Assessment of Adsorbents for Drying by Experiments and Dynamic Simulations

      1 in stock

      Firm sale: non returnable item
      SKU 9783958863033 Categories ,
      Select Guide Rating
      In order to slow down global warming, greenhouse gas emissions must be reduced. Human-caused greenhouse gas emissions come primarily from consumption of fossil energy. In order to reduce the consumption of fossil energy, the demand is rising for energy-efficient technologies. ...

      £43.99

      Buy new:

      Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

      Shipping costs: All shipping costs calculated in the cart or during the checkout process.

      Standard service (normally 2-3 working days): 48hr Tracked service.

      Premium service (next working day): 24hr Tracked service – signature service included.

      Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

      Signature Service: This service is only available for tracked items.

      Leave in Safe Place: This option is available at no additional charge for tracked services.

      Description

      Product ID:9783958863033
      Product Form:Paperback / softback
      Country of Manufacture:GB
      Series:Aachener Beitrage zur Technischen Thermodynamik
      Title:Assessment of Adsorbents for Drying by Experiments and Dynamic Simulations
      Authors:Author: Dr Meltem, Ph.D. Erdogan
      Page Count:178
      Subjects:Mechanical engineering, Mechanical engineering
      Description:Select Guide Rating
      In order to slow down global warming, greenhouse gas emissions must be reduced. Human-caused greenhouse gas emissions come primarily from consumption of fossil energy. In order to reduce the consumption of fossil energy, the demand is rising for energy-efficient technologies. One promising energy-efficient technology is the adsorption dishwasher that was commercialized recently. The use of adsorbents enabled the adsorption dishwasher to save 25% of energy compared to a conventional dishwasher. To increase the savings and to further enhance the entire process, the adsorption dishwasher should be improved. The improvement should foremost focus on the adsorbents, since adsorbents are the key of this energy-efficient technology. This thesis therefore assesses adsorbents for the application in an adsorption dishwasher. The assessment is carried out both experimentally and theoretically. Theoretical investigations are divided in 3 stages of complexity:Stage 1 is a static analysis that is used to determine the required minimum mass of adsorbent. Stage 2 is a simple dynamic model that is used to determine the drying times. This simple 2-stage theoretical investigation method is applicable for any drying process in order to estimate the suitability of adsorbents. As a parameter study, adsorbents out of 3 material classes are evaluated regarding drying time and adsorbent mass required for the application in an adsorption dishwasher . The trade-off between drying time and adsorbent mass is discussed by employing the Pareto-frontier. Based on the results of the simple 2-stage theoretical investigations, suitable commercially available adsorbents are investigated experimentally. Evaluation criteria of the experimental investigations are working capacity, pressure drop over the adsorbent bed and dehumidification rate. Based on these 3 criteria, the most suitable commercially available adsorbents are identified. Finally, to assess adsorbents considering all dynamic interactions within the adsorption dishwasher, a theoretical investigation is conducted as Stage 3. Stage 3 is a complex dynamic model of the adsorption dishwasher including all its components. The tradeoff between drying time, adsorbent mass and energy consumption is discussed by employing the resulting Pareto-frontiers. In summary, this thesis presents methods for characterisation of desiccants. By using these methods, more suitable adsorbents are found for use in the dishwasher application.

      In order to slow down global warming, greenhouse gas emissions must be reduced. Human-caused greenhouse gas emissions come primarily from consumption of fossil energy. In order to reduce the consumption of fossil energy, the demand is rising for energy-efficient technologies. One promising energy-efficient technology is the adsorption dishwasher that was commercialized recently. The use of adsorbents enabled the adsorption dishwasher to save 25% of energy compared to a conventional dishwasher. To increase the savings and to further enhance the entire process, the adsorption dishwasher should be improved. The improvement should foremost focus on the adsorbents, since adsorbents are the key of this energy-efficient technology.

      This thesis therefore assesses adsorbents for the application in an adsorption dishwasher. The assessment is carried out both experimentally and theoretically. Theoretical investigations are divided in 3 stages of complexity:

      Stage 1 is a static analysis that is used to determine the required minimum mass of adsorbent. Stage 2 is a simple dynamic model that is used to determine the drying times. This simple 2-stage theoretical investigation method is applicable for any drying process in order to estimate the suitability of adsorbents. As a parameter study, adsorbents out of 3 material classes are evaluated regarding drying time and adsorbent mass required for the application in an adsorption dishwasher . The trade-off between drying time and adsorbent mass is discussed by employing the Pareto-frontier.

      Based on the results of the simple 2-stage theoretical investigations, suitable commercially available adsorbents are investigated experimentally. Evaluation criteria of the experimental investigations are working capacity, pressure drop over the adsorbent bed and dehumidification rate. Based on these 3 criteria, the most suitable commercially available adsorbents are identified.

      Finally, to assess adsorbents considering all dynamic interactions within the adsorption dishwasher, a theoretical investigation is conducted as Stage 3. Stage 3 is a complex dynamic model of the adsorption dishwasher including all its components. The tradeoff between drying time, adsorbent mass and energy consumption is discussed by employing the resulting Pareto-frontiers.

      In summary, this thesis presents methods for characterisation of desiccants. By using these methods, more suitable adsorbents are found for use in the dishwasher application.


      Imprint Name:Verlag G. Mainz
      Publisher Name:Verlag G. Mainz
      Country of Publication:GB
      Publishing Date:2019-11-22

      Additional information

      Weight276 g
      Dimensions210 × 149 × 12 mm