Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Search Suggestions

      Royal Mail  express delivery to UK destinations

      Regular sales and promotions

      Stock updates every 20 minutes!

      A Milliliter-Scale Setup for the Efficient Characterization of Multicomponent Vapor-Liquid Equilibria Using Raman Spectroscopy

      1 in stock

      Firm sale: non returnable item
      SKU 9783958862470 Categories ,
      Select Guide Rating
      Vapor-liquid equilibrium (VLE) data are of major importance for the chemical industry. Despite significant progress in predictive methods, experimental VLE data are still indispensable. In this work, we address the need for experimental VLE data. Commonly, the characterization...

      £43.99

      Buy new:

      Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

      Shipping costs: All shipping costs calculated in the cart or during the checkout process.

      Standard service (normally 2-3 working days): 48hr Tracked service.

      Premium service (next working day): 24hr Tracked service – signature service included.

      Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

      Signature Service: This service is only available for tracked items.

      Leave in Safe Place: This option is available at no additional charge for tracked services.

      Description

      Product ID:9783958862470
      Product Form:Paperback / softback
      Country of Manufacture:GB
      Series:Technology in a Globalizing World
      Title:A Milliliter-Scale Setup for the Efficient Characterization of Multicomponent Vapor-Liquid Equilibria Using Raman Spectroscopy
      Authors:Author: Dr Bastian, Ph.D. Liebergesell
      Page Count:102
      Subjects:Mechanical engineering, Mechanical engineering
      Description:Select Guide Rating
      Vapor-liquid equilibrium (VLE) data are of major importance for the chemical industry. Despite significant progress in predictive methods, experimental VLE data are still indispensable. In this work, we address the need for experimental VLE data. Commonly, the characterization of VLE requires significant experimental effort. To limit the experimental effort, VLE measurements are frequently conducted by synthetic methods which employ samples of known composition and avoid complex analytics and sampling issues. In contrast, analytical methods provide independent information on phase compositions, commonly based on sampling and large amounts of substance. In the first part of this work, we employ a synthetic method, the well-established Cailletet setup, to characterize the high pressure VLE of two promising binary biofuel blends. The Cailletet method serves as a state of the art reference method that enables collecting data of remarkable accuracy. However, extensive infrastructure is needed. In the second part, to avoid extensive infrastructure and overcome limitations of previous methods, we develop a novel analytical milliliter-scale setup for the noninvasive and efficient characterization of VLE: RAMSPEQU (Raman Spectroscopic Phase Equilibrium Characterization). The novel setup saves substance and rapidly characterizes VLE. Sampling and its associated errors are avoided by analyzing phase compositions using Raman spectroscopy. Thereby, volumes of less than 3 ml are sufficient for reliable phase equilibrium measurements. To enable rapid data generation and save substance, we design an integrated workow combining Raman signal calibration and VLE measurement. As a result, RAMSPEQU gives access to up to 15 pT xy-data sets per workday. RAMSPEQU is successfully validated against pure component and binary VLE data from literature. However, mixtures with only two components rarely depict real industrial applications. As the number of experiments increases strongly with a rising number of components, the efficient RAMSPEQU setup seems particularly suited for multicomponent systems. In the third part of this work, we employ the RAMSPEQU setup for the characterization of a quaternary system and its binary subsystems. 22 ml and 105 ml of the binary and quaternary mixtures are sufficient for an extensive VLE characterization. The RAMSPEQU setup and its integrated workow enable the characterization of multicomponent VLE while saving significant amounts of substance and laboratory time.

      Vapor-liquid equilibrium (VLE) data are of major importance for the chemical industry. Despite significant progress in predictive methods, experimental VLE data are still indispensable. In this work, we address the need for experimental VLE data. Commonly, the characterization of VLE requires significant experimental effort. To limit the experimental effort, VLE measurements are frequently conducted by synthetic methods which employ samples of known composition and avoid complex analytics and sampling issues. In contrast, analytical methods provide independent information on phase compositions, commonly based on sampling and large amounts of substance.

      In the first part of this work, we employ a synthetic method, the well-established Cailletet setup, to characterize the high pressure VLE of two promising binary biofuel blends. The Cailletet method serves as a state of the art reference method that enables collecting data of remarkable accuracy. However, extensive infrastructure is needed.

      In the second part, to avoid extensive infrastructure and overcome limitations of previous methods, we develop a novel analytical milliliter-scale setup for the noninvasive and efficient characterization of VLE: RAMSPEQU (Raman Spectroscopic Phase Equilibrium Characterization). The novel setup saves substance and rapidly characterizes VLE. Sampling and its associated errors are avoided by analyzing phase compositions using Raman spectroscopy. Thereby, volumes of less than 3 ml are sufficient for reliable phase equilibrium measurements. To enable rapid data generation and save substance, we design an integrated workow combining Raman signal calibration and VLE measurement. As a result, RAMSPEQU gives access to up to 15 pT xy-data sets per workday. RAMSPEQU is successfully validated against pure component and binary VLE data from literature.

      However, mixtures with only two components rarely depict real industrial applications. As the number of experiments increases strongly with a rising number of components, the efficient RAMSPEQU setup seems particularly suited for multicomponent systems. In the third part of this work, we employ the RAMSPEQU setup for the characterization of a quaternary system and its binary subsystems. 22 ml and 105 ml of the binary and quaternary mixtures are sufficient for an extensive VLE characterization.

      The RAMSPEQU setup and its integrated workow enable the characterization of multicomponent VLE while saving significant amounts of substance and laboratory time.


      Imprint Name:Verlag G. Mainz
      Publisher Name:Verlag G. Mainz
      Country of Publication:GB
      Publishing Date:2018-11-06

      Additional information

      Weight180 g
      Dimensions211 × 149 × 9 mm