Use coupon code “MARCH20” for a 20% discount on all items! Valid until 31-03-2025

Site Logo
Search Suggestions

      Royal Mail  express delivery to UK destinations

      Regular sales and promotions

      Stock updates every 20 minutes!

      Speech Signal Enhancement by Information Combining

      1 in stock

      Firm sale: non returnable item
      SKU 9783958861251 Categories ,
      Select Guide Rating
      Mobile phones as well as tablets are omnipresent and belong to everyday life. Today audiovisual communication takes place at different locations and in a large variety of acoustic environments. In consequence, the intelligibility as well as the quality of speech may significan...

      £43.99

      Buy new:

      Delivery: UK delivery Only. Usually dispatched in 1-2 working days.

      Shipping costs: All shipping costs calculated in the cart or during the checkout process.

      Standard service (normally 2-3 working days): 48hr Tracked service.

      Premium service (next working day): 24hr Tracked service – signature service included.

      Royal mail: 24 & 48hr Tracked: Trackable items weighing up to 20kg are tracked to door and are inclusive of text and email with ‘Leave in Safe Place’ options, but are non-signature services. Examples of service expected: Standard 48hr service – if ordered before 3pm on Thursday then expected delivery would be on Saturday. If Premium 24hr service used, then expected delivery would be Friday.

      Signature Service: This service is only available for tracked items.

      Leave in Safe Place: This option is available at no additional charge for tracked services.

      Description

      Product ID:9783958861251
      Product Form:Paperback / softback
      Country of Manufacture:GB
      Series:Aachener Beitrage zu digitalen Nachrichtensystemen
      Title:Speech Signal Enhancement by Information Combining
      Authors:Author: Dr Florian Kurt Wolfgang Paul, Ph.D. Heese
      Page Count:194
      Subjects:Communication studies, Communication studies
      Description:Select Guide Rating
      Mobile phones as well as tablets are omnipresent and belong to everyday life. Today audiovisual communication takes place at different locations and in a large variety of acoustic environments. In consequence, the intelligibility as well as the quality of speech may significantly be degraded by ambient background noise. In order to improve speech intelligibility and to ensure a convenient communication with high audio quality, speech enhancement techniques are required. In this thesis all critical components contributing to the enhancement of the up-link signal are addressed:• signal capturing at the acoustic front-end with a new near field beamformer• new codebook based speech and noise estimation procedure generating and exploiting reliability information, and• actual noise reduction exploiting spectral dependencies of human speech. For the acoustic front-end of the digital processing chain a novel concept for the filter optimization of a near field beamformer is introduced. The optimization scheme allows to closely approximate a predefined reception characteristic which can be freely chosen according to the application. The output of the beamformer provides a pre-enhanced signal with improved SNR for subsequent single-microphone based speech enhancement. Single-microphone noise reduction usually relies on statistical properties of speech and noise. In general, the noise is assumed to be stationary or only slightly time-varying, which is in practice often not fulfilled. Due to imprecise noise estimation, single-microphone systems are prone to unpleasant artifacts that are called musical tones. In this context different Information Combining methods, merging various estimates, are presented which address specifically the problem of non-stationary noise signals, leading to a significant improved estimation accuracy. On the one hand, the proposed Information Combining is used with respect to spectral dependencies of human speech. On the other hand, it merges the best of several speech and noise estimates depending on their reliability. The necessary estimates are provided by a new statistical noise estimator as well as a codebook driven speech and noise estimation algorithm. The achieved estimation quality opens up the possibility to close the gap between the conflicting goals of high noise attenuation, low speech distortion, and the prevention of undesired musical tone artifacts. Finally, the practical aspects of the proposed enhancement systems are considered and discussed with two implemented real-time demonstrators.

      Mobile phones as well as tablets are omnipresent and belong to everyday life. Today audiovisual communication takes place at different locations and in a large variety of acoustic environments. In consequence, the intelligibility as well as the quality of speech may significantly be degraded by ambient background noise. In order to improve speech intelligibility and to ensure a convenient communication with high audio quality, speech enhancement techniques are required. In this thesis all critical components contributing to the enhancement of the up-link signal are addressed:

      • signal capturing at the acoustic front-end with a new near field beamformer

      • new codebook based speech and noise estimation procedure generating and exploiting reliability information, and

      • actual noise reduction exploiting spectral dependencies of human speech.

      For the acoustic front-end of the digital processing chain a novel concept for the filter optimization of a near field beamformer is introduced. The optimization scheme allows to closely approximate a predefined reception characteristic which can be freely chosen according to the application. The output of the beamformer provides a pre-enhanced signal with improved SNR for subsequent single-microphone based speech enhancement.

      Single-microphone noise reduction usually relies on statistical properties of speech and noise. In general, the noise is assumed to be stationary or only slightly time-varying, which is in practice often not fulfilled. Due to imprecise noise estimation, single-microphone systems are prone to unpleasant artifacts that are called musical tones. In this context different Information Combining methods, merging various estimates, are presented which address specifically the problem of non-stationary noise signals, leading to a significant improved estimation accuracy. On the one hand, the proposed Information Combining is used with respect to spectral dependencies of human speech. On the other hand, it merges the best of several speech and noise estimates depending on their reliability. The necessary estimates are provided by a new statistical noise estimator as well as a codebook driven speech and noise estimation algorithm. The achieved estimation quality opens up the possibility to close the gap between the conflicting goals of high noise attenuation, low speech distortion, and the prevention of undesired musical tone artifacts. Finally, the practical aspects of the proposed enhancement systems are considered and discussed with two implemented real-time demonstrators.


      Imprint Name:Verlag G. Mainz
      Publisher Name:Verlag G. Mainz
      Country of Publication:GB
      Publishing Date:2016-12-19

      Additional information

      Weight276 g
      Dimensions210 × 149 × 13 mm